Sla over naar inhoud

Balancing Privacy and Security: Navigating the Future of Federated Learning and AI

Nieuws
07-08-2024
Armin Shokri Kalisa
Based on the works of A. Shokri Kalisa, this article covers how attackers can use backdoor attacks to poison the model resulting from Federated Learning and what steps can be taken to make it more robust against these attacks.


By Armin Shokri Kalisa and Robbert Schravendijk

Introduction

Apple, Microsoft, and Google are ushering in an era of artificially intelligent (AI) smartphones and computers designed to automate tasks such as photo editing and sending birthday greetings (B.X. Chen, 2024). However, to enable these features, they require access to more user data. In this new approach, Windows computers will frequently take screenshots of user activities, iPhones will compile information from various apps, and Android phones will listen to calls in real-time to detect scams. This raises the question: Are you willing to share this level of personal information? The ongoing boom in artificial intelligence (AI) is gradually infiltrating more and more applications. This, in turn, raises privacy concerns regarding the vast amounts of data required to train these AI models. One of the proposed solutions is to decentralize learning by allowing each device to train a model locally on its own data without sharing it. These local models are then aggregated to form a new global model. This privacy-friendly framework, called Federated Learning (B. McMahan et al., 2017) has been introduced to address this problem. While this new framework is very useful for a future in which AI models can be trained in a more privacy-friendly manner, it does not guarantee security from attacks. Based on the works of A. Shokri Kalisa, this article covers how attackers can use backdoor attacks to poison the model resulting from FL and what steps can be taken to make it more robust against these attacks.

[....]

Lees verder op: isaca.nl

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Top vacature
TKP Pensioen
3.400 - 4.800
Junior, Medior
Groningen
Je houdt van puzzelen met data en weet hoe je data om kunt zetten in nieuwe inzichten. Met jouw nieuwsgierigheid naar nieuwe technologie én je drive om processen slimmer te...
Top vacature
Achmea
3.855 - 5.293
Medior, Senior
Apeldoorn
Zilveren Kruis zoekt een Data Specialist voor Finance. Je beheert en ontwikkelt business intelligence producten, werkt in een Agile Scrumteam en helpt bij financiële en wettelijke rapportages binnen hun BI-platform.
Top vacature
DMFCO Asset Management
Marktconform
Medior, Junior
Den Haag
Ben je klaar om je carrière naar een hoger niveau te tillen? En dat bij een organisatie die bruist van energie en innovatie? Zoek niet verder!
Top vacature
BeFrank
3.308 - 6.615
Medior, Junior
Amsterdam
Als Data Analist bij BeFrank ben je verantwoordelijk voor het analyseren en visualiseren van diverse data voor interne besluitvorming en rapportage, met een focus op datakwaliteit en bedrijfsbreed inzicht.