Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Top vacature
ARAG
3.541 - 5.565
Junior, Medior
Leusden, hybride
De wereld verandert en wij veranderen mee. Ben jij een gedreven business analist met een passie voor data?
Top vacature
NN
6.219 - 8.885
Medior, Senior
Rotterdam
Are you an experienced public cloud professional? Are you skilled in programming with Python and Bash/Powershell? Do you also have extensive experience with Infrastructure as Code, especially Terraform and Terragrunt?...
Top vacature
NN
3.794 - 5.421
Senior, Medior, Junior
Rotterdam
Jij bent degene die ons team naar een hoger niveau brengt in data gedreven werken en het gebruik van process mining en daarmee optimale waarde levert in het optimaliseren van...
Top vacature
KPMG
Marktconform
Medior
Amstelveen
Ben jij een ervaren privacy consultant met een juridische achtergrond? Dan zijn wij op zoek naar jou!